Verbindungsinformation

Um diese Aktion durchführen zu können, benötigt WordPress Zugriff auf deinen Webserver. Bitte gib die FTP-Zugangsdaten ein, um fortzufahren. Falls du deine Zugangsdaten vergessen hast, so solltest du bei deinem Webhoster nachfragen.

Verbindungstyp

Die enzymatische Lebensmittelanalyse ist eine wichtige Methode für die Bestimmung von Zuckern, Säuren, Alkoholen und anderen Inhaltsstoffen in Produkten wie Wein, Bier, Fruchtsäften, Milchprodukten, Eiern oder Fleisch.

Bestimmte Parameter können auf hygienische Mängel in der Produktion hinweisen, andere sind ein wichtiger Qualitätsindikator bei der Bier- und Weinproduktion. Deshalb sind enzymatische Methoden im Bereich der Qualitätssicherung von großer Bedeutung. Unsere Tests beruhen auf hochwertigen und gereinigten Enzymen, die eine präzise und spezifische Messung der einzelnen Komponenten, auch in komplexen Proben, erlauben. Die Auswertung erfolgt mit einem Spektralphotometer; eine Automatisierung ist möglich.

Zahlreiche enzymatische Methoden wurden von internationalen Organisationen anerkannt oder validiert, z.B.:

  • AOAC (American Association of Analytical Chemists)
  • CEN (European Committee for Standardization)
  • IDF (International Dairy Federation)
  • IFU (International Federation of Fruit Juice Producers)
  • ISO (International Standardisation Organisation)
  • OIV (International Organization of Wine)

Wir bieten für die enzymatische Analyse verschiedene Testsysteme an, mit denen mehr als 30 verschiedene Parameter analysiert werden können. Neben der internationalen Referenzmethode, der „Gelben Linie“ von Roche, und den Produktlinien Enzytec™ Generic, Enzytec™ Liquid und Enzytec™ Color steht auch das kompakte Testsystem RIDA®CUBE SCAN für die schnelle Einzeltestung vor Ort zur Verfügung.

Produktübersicht

Alle Testkits für die enzymatische Lebensmittelanalytik finden Sie auch in unserer Produktübersicht, die Sie kostenlos herunterladen können.

Säurenachweis

Der Nachweis von organischen Säuren wie Zitronensäure, Milchsäure oder Essigsäure ist von großer Bedeutung unter anderem bei der Herstellung von Wein, Bier und anderen Getränken. Manche Säuren können das Produkt verderben, andere werden als Zusatzstoff eingesetzt, und wieder andere sind wichtige Qualitätsindikatoren. Klicken Sie auf eine der folgenden Säuren, um mehr über den Inhaltsstoff und seine Relevanz in der Lebensmittelproduktion zu erfahren.

Essigsäure (Acetat)

Essigsäure ist das Endprodukt der Fermentation und das Oxidationsprodukt von Acetaldehyd und Ethanol. Die Bestimmung von Essigsäure ist vor allem in der Weinindustrie von großer Bedeutung, denn die Säure verleiht dem Wein Aroma, kann in hohen Konzentrationen jedoch zum Verderb führen. Essigsäure ist der Hauptbestandteil der „flüchtigen Säuren“ im Wein und wird während der gesamten Weinproduktion kontrolliert. Daneben wird Essigsäure in der Lebensmittelindustrie als Konservierungsmittel (E260) sowie als Geschmacksverstärker eingesetzt. Deshalb ist die Bestimmung der Säurekonzentration in vielen Lebensmitteln von Bedeutung: von Bier, Brot, Backwaren, Backtriebmittel und Sauerteig über Fisch, Fleisch und Milchprodukten bis hin zu Obst, Gemüse, Soßen, Dressings, Ketchup, Mayonnaise, Sojasoße, Sauerkonserven, Gewürzen, Tee, Essig, Tierfutter und Arzneimittel.

L-Ascorbinsäure

L-Ascorbinsäure (Vitamin C) ist eine natürlich vorkommende organische Verbindung mit antioxidativen Eigenschaften, die in Obst und Gemüse vorkommt. Die quantitative Bestimmung von L-Ascorbinsäure ist vor allem in der Produktion von Wein, Bier, Milch, Softdrinks und Fruchtsäften von Bedeutung. Aufgrund seiner essenziellen Rolle in der menschlichen Ernährung und seinen geschmacksverstärkenden Eigenschaften wird Vitamin C (E300) häufig als Lebensmittelzusatzstoff eingesetzt. In der Weinindustrie kann L-Ascorbinsäure zugesetzt werden, um eine Oxidation des Weins zu verhindern. Auch in der Bierproduktion gilt L-Ascorbinsäure als effektives Antioxidant und hat zudem einen positiven Einfluss auf Aroma, Geschmack und Stabilität. In der Fleischindustrie wird L-Ascorbinsäure zudem als Mittel zur Rotfärbung genutzt. Daneben wird L-Ascorbinsäure als Zusatzstoff in Arzneimitteln und Tierfutter eingesetzt. Wird L-Ascorbinsäure in der Lebensmittelproduktion zugefügt, muss die Konzentration kontrolliert werden.

Zitronensäure

Zitronensäure ist ein Metabolit in Tieren, Pflanzen und Mikroorganismen. In großen Mengen ist es in Zitrusfrüchten enthalten (ca. 10 g Zitronensäure pro Liter Orangensaft). Zitronensäure wird biotechnologisch in großem Maßstab hergestellt und als Zusatzstoff (E330) eingesetzt. Sie wird genutzt als Konservierungsmittel (Säuerungsmittel) für Lebensmittel und Kosmetik, als Chelatbildner für Metalle (z.B. für Eisen im Wein), als Emulgator (z.B. in der Produktion von Schmelzkäse) sowie als Aromastoff in der Produktion von Softdrinks und Süßigkeiten. Sie ist zudem Bestandteil vieler Arzneimittel und Waschmittel.

Ameisensäure (Formiat)

Ameisensäure tritt als Metabolit in vielen biochemischen Reaktionen auf, jedoch stets in sehr geringen Konzentrationen. Sie ist das Oxidationsprodukt von Methanol und Formaldehyd. Da Ameisensäure in geringen Konzentrationen sowohl bakterizid als auch fungizid wirkt, kann sie als Konservierungsmittel eingesetzt werden. Ameisensäure ist ein Nebenprodukt der Essigsäure-Fermentation in der Essigproduktion und zählt außerdem zu den „flüchtigen Säuren“ im Wein.

Gluconsäure

Gluconsäure hat einen säuerlichen, aber erfrischenden Geschmack und kommt natürlicherweise in Obst, Honig, Wein sowie in Milch- und Fleischprodukten vor. Als Zusatzstoff E574 ist sie ein häufig genutzter Säureregulator in der Lebensmittelproduktion, z.B. für Joghurt, Hüttenkäse, Brot, Süßwaren, Fleisch und Wurst. Sie wird zudem in Reinigungsmitteln eingesetzt.

L-Glutaminsäure

L-Glutaminsäure (L-Glutamat) ist eine der 20 geläufigen Aminosäuren und kommt natürlicherweise in Lebensmitteln wie Käse, Milch, Fleisch, Fisch, Mais, Tomaten, Pilzen, Sojabohnen und Zuckerrüben vor. Die Bestimmung der L-Glutamat-Konzentration ist unter anderem bei der Reife von Käse oder Pflanzen von Bedeutung. L-Glutaminsäure wird auch als Geschmacksverstärker (Mononatriumglutamat, E621) eingesetzt. Glutamat ist ein Allergen; übermäßige Nutzung kann zu Symptomen wie dem „China-Restaurant-Syndrom“ führen.

D-3-Hydroxybuttersäure

In Eiern kann 6 Tage nach der Befruchtung ein Anstieg von D-3-Hydroxybuttersäure nachgewiesen werden. Dieser Anstieg setzt sich fort, selbst wenn der Embryo gestorben ist. D-3-Hydroxybuttersäure ist daher ein typischer Indikator für befruchtete und bebrütete Eier. In Backwaren ist Hydroxybuttersäure ein Indikator dafür, wie frisch die Eier bei der Zubereitung waren.

D-Isocitronensäure

D-Isocitronensäure ist Bestandteil des Zitronensäurezyklus und kommt daher in allen Tieren und Pflanzen vor. Die Konzentration ist üblicherweise sehr niedrig. Die Bestimmung von D-Isocitronensäure spielt eine wichtige Rolle bei der Analyse von Fruchtsäften (insbesondere Orangensaft) zum Nachweis von unerlaubten Zusatzstoffen (z.B. Zitronensäure). Neben dem Gehalt an D-Isocitronensäure ist auch das Verhältnis Zitronensäure/D-Isocitronensäure von Interesse: Ist der Wert zu hoch, weist das darauf hin, dass Zitronensäure zugesetzt wurde. In unverfälschtem Orangensaft ist das Verhältnis überlicherweise niedriger als 130; ein höherer Wert weist auf eine Produktverfälschung hin. Der Gehalt an D-Isocitronensäure wird auch gemessen, um z.B. bei Softdrinks Aussagen wie „enthält Orangensaft“ zu verifizieren.

L-Milchsäure (L-Lactat)

L-Milchsäure wird von Milchsäurebakterien gebildet und kommt in vielen Lebensmitteln und Getränken vor, z.B. in fermentierten Milchprodukten wie Joghurt, in sauer eingelegtem Gemüse und in geräuchertem Fisch und Fleisch. Sie wird in der Lebensmittelindustrie als Säuerungsmittel (E270) eingesetzt. In der Weinindustrie ist ein fallender Gehalt an L-Apfelsäure und ein steigender Gehalt an L-Milchsäure ein wichtiger Indikator während der malolaktischen Gärung. In der Bierproduktion wird L-Milchsäure als Indikator für das Vorhandensein von Milchsäurebakterien genutzt. In Vollei oder Eipulver gibt L-Milchsäure Hinweise über die hygienischen Bedingungen der Produkte. Auch die Qualität von Milchprodukten, Obst und Gemüse kann entsprechend durch Messung der L-Milchsäurekonzentration bestimmt werden.

D-Milchsäure (D-Lactat)

D-Milchsäure wird meist gemeinsam mit L-Milchsäure gemessen, selten allein. D-Milchsäure wird nur von wenigen Mikroorganismen gebildet, z.B. von Lactobacillus lactis, Lb. bulgaricus und Leuconostoc cremoris, und gar nicht oder nur in geringen Mengen von „höheren Organismen“ wie z.B. Tieren. Das Vorhandensein von D-Milchsäure kann daher als Indikator für mikrobiologische Kontamination oder Verderb dienen — vorausgesetzt, dass bei der Lebensmittelproduktion keine Fermentationstechniken zum Einsatz kamen, wie z.B. bei der Herstellung von Sauermilchprodukten.

L-Apfelsäure (L-Malat)

L-Apfelsäure ist eine der wichtigsten Fruchtsäuren. Die Bestimmung ihrer Konzentration ist vor allem in der Produktion von Wein, Bier, Brot, Obst- und Gemüseprodukten, sowie von Kosmetik und Arzneimitteln von Bedeutung. Die mikrobielle Zersetzung von L-Apfelsäure führt zur Bildung von L-Milchsäure, was in der Weinproduktion eine erwünschte Reaktion sein kann (malolaktische Fermentation, biologische Entsäuerung), oder im Fall von Bier eine unerwünschte Reaktion (zweite Gärung). L-Apfelsäure ist eine stärkere Säure als Zitronensäure und wird in der Lebensmittelproduktion daher auch als Konservierungsmittel (E296) sowie als Geschmacksverstärker eingesetzt.

D-Apfelsäure (D-Malat)

D-Apfelsäure kommt in der Natur praktisch nicht vor; sie ist ein Metabolit, der nur von wenigen Mikroorganismen gebildet wird. D-Apfelsäure ist ein Bestandteil von chemisch hergestellter D-/L-Apfelsäure. Da natürliche Produkte praktisch frei von D-Apfelsäure sind, ist ihr Vorhandensein ein Indikator dafür, dass D-/L-Apfelsäure zugesetzt wurde (z.B. bei Wein oder Fruchtsaft), was je nach nationaler Gesetzlage verboten sein kann.

Bernsteinsäure (Succinat)

Als Metabolit des Zitronensäurezyklus ist Bernsteinsäure in Tieren, Pflanzen und Mikroorganismen weit verbreitet. Bernsteinsäure ist ein spezifischer Indikator für mikrobielle Zersetzung in Eiern und Eierprodukten (> 5 mg/kg). Die Bernsteinsäurekonzentration wird bei der Produktion zahlreicher Lebensmittel und Getränke (z.B. Wein, Sojasoße, Sojabohnen, Fruchtsaft, Milchprodukte) überwacht. Die Säure wird zudem als Aromastoff verwendet. Weiterhin kann der Reifeprozess von Äpfeln anhand einer abnehmenden Konzentration von Bernsteinsäure verfolgt werden. Bernsteinsäure hat ihren Weg auch in zahlreiche Non-Food-Anwendungen gefunden (z.B. Farbstoffe, Duftstoffe, Arzneimittel, Kühlmittel, Lacke).

Weinsäure

Weinsäure ist eine der wichtigsten Säuren in Trauben und daher ein wichtiger Parameter in der Weinproduktion.

Zuckernachweis

Ob in Getränken, Milchprodukten, Diätnahrung oder Süßwaren: Mit enzymatischen Tests werden Zucker wie Glukose, Fruktose, Laktose, Sukrose oder Maltose schnell und spezifisch bestimmt. Klicken Sie auf eine der folgenden Zuckerarten, um mehr über den Inhaltsstoff und seine Relevanz in der Lebensmittelproduktion zu erfahren.

D-Glucose

D-Glucose ist im Tier- und Pflanzenreich weit verbreitet. Sie ist ein wesentlicher Bestandteil des Kohlenhydratstoffwechsels und tritt häufig in ungebundener Form zusammen mit D-Fructose und Sucrose auf. Die wichtigeren Formen sind Di-, Tri-, Oligo- und Polysaccharide (Lactose, Maltose, Sucrose, Raffinose, Dextrin, Stärke, Zellulose). In signifikanten Mengen ist D-Glucose enthalten in Honig, Wein, Bier und Fruchtsäften sowie in einigen festen Lebensmitteln wie Brot, Gebäck, Schokolade und Süßwaren. Von besonderer Bedeutung ist die Bestimmung der D-Glucose-Konzentration in diätetischen Lebensmitteln.

D-Glucose / D-Fructose

D-Glucose und D-Fructose kommen in den meisten Pflanzenprodukten vor. D-Glucose ist in signifikanten Mengen enthalten in Honig, Wein, Bier und Fruchtsäften sowie in einigen festen Lebensmitteln wie Brot, Gebäck, Schokolade und Süßwaren. Fructose (oder Fruchtzucker) ist ein Monosaccharid, das in Pflanzen häufig an Glucose gebunden ist, um ein Disaccharid zu bilden. In der Bier- und Weinindustrie ist die Summe von D-Glucose und D-Fructose ein Schlüsselparameter, denn es repräsentiert die Menge an Zucker, die der Hefe zur Umsetzung zu Ethanol zur Verfügung steht. In Honig weist das Verhältnis zwischen beiden Zuckern auf einen unerlaubten Zusatz von Zucker (Glukosesirup) hin. Die Konzentration von D-Glucose und D-Fructose wird in zahlreichen Lebensmitteln gemessen, entweder unabhängig voneinander oder auch gleichzeitig.

Lactose / D-Galactose

Laktose ist ein Disaccharid, das aus Galaktose und Glukose zusammengesetzt ist. Laktose ist eine wichtige Kohlenhydrat-Komponente von Muttermilch und daher von ernährungsphysiologischer Bedeutung. Die Laktosekonzentration in Milch von gesunden Kühen liegt bei ca. 4,6 bis 5 g / 100 g. Laktase (ß-Galactosidase), ein Enzym im Magensaft, spaltet Laktose auf in D-Galaktose und D-Glukose. Menschen, denen dieses Enzym fehlt, können Milch nicht verdauen und werden als laktoseintolerant bezeichnet. Die Bestimmung von Laktosekonzentrationen ist von besonderer Bedeutung bei Produkten, die als laktosefrei gekennzeichnet sind. Zudem kann Laktose als Süßungsmittel verwendet werden und sollte daher kontrolliert werden. D-Galaktose tritt sehr selten in ungebundener Form auf; die Messung von Laktose/Galaktose ist daher zuverlässiger als die Messung von Laktose/Glukose.

Maltose / Sucrose / D-Glucose

Maltose ist ein Abbauprodukt der Stärke. Maltose wird gemeinsam mit Sucrose und D-Glucose gemessen, weil das Enzym α-Glucosidase nicht nur mit Maltose, sondern auch mit Sucrose reagiert.

Raffinose

Raffinose ist ein Trisaccharid, das aus Galaktose, Glukose und Fruktose besteht. Es findet sich in Bohnen, Kohl, Rosenkohl, Brokkoli, Spargel sowie anderen Gemüsesorten und Vollkorngetreide. Raffinose kann durch das Enzym α-Galactosidase (α-GAL) zu D-Galaktose und Sucrose hydrolisiert werden. Menschen und andere monogastrische Lebewesen (z.B. Schweine, Geflügel) besitzen dieses Enzym nicht und die Oligosaccharide passieren den Magen und den oberen Darmbereich unverdaut. Im unteren Darmbereich werden sie von gasproduzierenden Bakterien vergoren, wodurch Kohlendioxid, Methan oder Wasserstoff entsteht — was in Blähungen resultiert, die gemeinhin mit dem Verzehr von Bohnen in Verbindung gebracht werden.

Stärke

Stärke zählt zu den Kohlenhydraten und ist ein Polysaccharid, das aus zahlreichen Glukose-Einheiten sowie α-1,4- und α-1,6-glycosidischen Bindungen (Amylose, Amylopektin) besteht. Stärke wird von den meisten grünen Pflanzen als Energiespeicher produziert. Sie zählt zu den häufigsten Kohlenhydraten in der menschlichen Ernährung und ist in großen Mengen in Grundnahrungsmitteln wie Kartoffeln, Weizen, Mais und Reis enthalten. Stärke ist ein wichtiger Bestandteil von Lebensmitteln und Futtermitteln. Sie dient in diversen Lebensmitteln als Bindemittel (z.B. in Soßen), Füller, Verdickungsmittel und Strukturmittel. Teilweise hydrolisierte Stärken werden auch in Softdrinks eingesetzt sowie unerlaubterweise zu Wein zugesetzt, um den Trockenextrakt zu erhöhen (und dadurch eine bessere Weinqualität vorzutäuschen).

Sucrose / D-Glucose

Sucrose und Glucose spielen eine zentrale Rolle im pflanzlichen Stoffwechsel. Sie sind in signifikanten Mengen enthalten in Honig, Wein, Bier und Fruchtsäften sowie in einigen festen Lebensmitteln wie Brot, Gebäck, Schokolade und Süßwaren. Sucrose ist zudem bekannt als Haushaltszucker. Die Isolation von Sucrose aus Zuckerohr und Zuckerrüben ist von großem ökonomischem Interesse. Wenn Sucrose hydrolisiert (invertiert) wird, bilden sich D-Glucose und D-Fructose. Sucrose ist eine wichtige Zutat in Lebensmitteln — nicht nur als Süßungsmittel, sondern auch aus finanzieller Sicht. So wird beispielsweise Honig aus Kostengründen günstiger Zucker zugesetzt. Für viele Früchte und für Honig existieren spezifische Zuckerverhältnisse, die als Indikator genutzt werden können, um zugesetzten Zucker nachzuweisen.

Sucrose / Glucose / Fructose

Sucrose, D-Glucose und D-Fructose finden sich in den meisten Pflanzen und Lebensmitteln. In pflanzlichen Materialien treten D-Glucose und D-Fructose als freie Zucker sowie in einer Reihe von Oligo- und Polysacchariden (z.B. Fruktane/Inuline, Stärke, Zellulose) auf. Sie sind in signifikanten Mengen enthalten in Honig, Wein, Bier und Fruchtsäften sowie in einigen festen Lebensmitteln wie Brot, Gebäck, Schokolade und Süßwaren.

Weitere Parameter

Neben Säuren und Zuckern können mit unseren enzymatischen Tests noch eine Reihe weiterer Parameter in Lebensmitteln nachgewiesen werden – zum Beispiel Alkohole, Salz, Sulfit, Cholesterin, Ammoniak oder Metalle wie Kupfer und Eisen.

Acetaldehyd

Acetaldehyd kommt als Produkt zahlreicher Stoffwechselvorgänge natürlicherweise in allen Organismen vor, wenn auch in sehr geringen Mengen. So ist Acetaldehyd vorhanden in Kaffee, Brot, reifen Früchten und Pflanzen. In der Lebensmittelproduktion steigt die Konzentration von Acetaldehyd erheblich, wenn eine alkoholische Gärung stattfindet; so können Konzentrationen von 100 mg/l in Wein und 20 mg/l in Bier gemessen werden. Auf der anderen Seite ist Acetaldehyd ein wichtiger Geschmacksträger in Wein und Bier. In Milchprodukten wie Joghurt und Käse ist Acetaldehyd verantwortlich für erwünschte Aromen, aber auch für Geschmacksfehler.

Ammoniak

Ammoniak entsteht in der Umwelt durch natürliche Prozesse des Stickstoffkreislaufs, aber auch durch die Industrie (z.B. Intensivlandwirtschaft). Hohe Ammoniakkonzentrationen können auf (mikrobielle) Zersetzung von Lebensmitteln wie Milch, Fleisch oder Meeresfrüchten hinweisen, wo es als Hauptgrund für Geschmacksfehler und Geruchsbildung mit Verderb in Verbindung gebracht wird. Ammoniak weist aber auch auf das Vorhandensein von Fäkalien, Urin und Mikroorganismen in Wasser hin. Ein positiver Aspekt von Ammoniak ist, dass es eine wichtige Stickstoffquelle für viele Mikroorganismen während des Gärprozesses ist und somit z.B. in der Weinproduktion eine Rolle spielt. Ammoniumsalze werden in großem Maßstab für die Herstellung von Düngemitteln, Tierfutter und Papier sowie in der Lebensmittelproduktion als Backtriebmittel, Stabilisator und Aromastoff genutzt.

Cholesterin

Cholesterin ist das wichtigste der tierischen Sterine. Es ist ein wichtiger Bestandteil der Zellmembranen von höheren Spezies und die Vorstufe einer ganzen Reihe von Steroidhormonen. Cholesterin findet sich in allen tierischen Fetten und ist ein wichtiger Bestandteil des Eigelbs. Es ist enthalten in Lebensmitteln wie Fleisch, Geflügel, Meeresfrüchten und Milchprodukten. Aufgrund seiner relativen Beständigkeit wird es häufig für die Bestimmung des Eigehalts in Lebensmitteln wie Backwaren, Nudeln und Likör genutzt. Eine cholesterinreiche Ernährung kann Herz-, Leber- und Nierenerkrankungen auslösen. Die Tagesdosis sollte 300 mg nicht überschreiten.

Kupfer

Die Bestimmung des Kupfergehalts ist wichtig in der Weinproduktion. Übermäßige Kupferionen (z.B. durch Schönung) können eine unansehnliche Trübung im fertigen Wein verursachen.

Ethanol

Ethanol kommt in der Natur in praktisch allen Organismen vor, wenn auch in sehr geringen Mengen. Es ist das Endprodukt der alkoholischen Gärung und ein erwünschter Bestandteil alkoholischer Getränke — aber auch ein unerwünschter Bestandteil in alkoholfreien oder alkoholreduzierten Getränken sowie in anderen Lebensmitteln wie z.B. Schokolade, Süßwaren, Marmelade, Honig, Essig und Milchprodukten. Das Vorhandensein von Ethanol in Fruchtprodukten wie Fruchtsäften weist darauf hin, dass die Zutaten verdorben sind. Ethanol ist zudem ein indirekter Indikator für das Vorhandensein von Hefe. In Fleischprodukten weist Ethanol auf Verderb hin. In der Non-Food-Insudtrie wird Ethanol als Lösungsmittel (z.B. für ätherische Öle und pharmazeutische Substanzen) genutzt.

Glyzerin

Glyzerin, ein Nebenprodukt der alkoholischen Gärung, und seine Fettsäureester (Glyceride) kommen in der Natur häufig vor. In der Lebensmittelindustrie ist Glyzerin ein wichtiges Feuchthaltemittel für Backwaren. Es wird zudem Süßwaren und Glasuren zugesetzt, um Kristallisation zu verhindern, und als Lösungsmittel für Lebensmittelfarben sowie als Geschmacksträger verwendet. Als Produkt der Gärung wird Glyzerin in der Bier- und Weinindustrie überwacht, wo es in Konzentrationen von ca. 1 % (v/v) vorliegt. Glyzerin trägt zum Aroma bei; sein süßer Geschmack verleiht dem Wein „Körper“. In der Pharmaindustrie verleiht Glyzerin Lotionen, Cremes und Zahnpasta Geschmeidigkeit. Das Glyzeringerüst findet sich in allen Lipiden, die als Triglyceride bekannt sind.

Eisen

Eisenione sind (gemeinsam mit Kupfer) an der Trübung beteiligt und können Wein durch Kontakt mit Eisenoberflächen (z.B. nicht-rostfreier Stahl) kontaminieren. Der Höchstwert liegt bei etwa 8 mg/l; oberhalb dieses Grenzwerts ist das Risiko einer Eisen-Trübung hoch.

Nitrat (NO3-)

Das Nitrogen, das Pflanzen zum Wachsen (Proteinbildung) benötigen, wird von ihnen fast vollständig in Form von Nitrat (Düngemittel) aufgenommen. Nitrat ist von ernährungsphysiologischer Bedeutung, denn es wird reduziert zu Nitrit und bildet Stoffe, die an Hämoglobin binden. Es bildet auch Nitrosamine, die als krebserregend gelten. Einige Pflanzen, z.B. Kohl, rote Bete, Radieschen, Spinat und Salat, haben die Fähigkeit, Nitrat in ihrem Gewebe zu speichern. Der Nitratgehalt in Kartoffeln ist relativ gering. Beim Kochen wird viel Nitrat aus dem Gemüse entfernt. In der Fleischproduktion wird Kaliumnitrat zum Salzen und Röten genutzt. Die Nitrat/Nitrit-Konzentration in Fleischprodukten darf 100 mg/kg jedoch nicht übersteigen. In Fruchtsäften weisen hohe Nitratkonzentrationen darauf hin, dass Leitungswasser zugesetzt wurde. Es gibt zudem Grenzwerte für die Nitratkonzentration in Trinkwasser / Leitungswasser (z.B. 50 mg/l in Europa). „Natürliches“ Wasser enthält ca. 1 mg Nitrat pro Liter.

D-Sorbitol & Xylit

D-Sorbitol ist ein Zuckeralkohol, der reichlich in Früchten (z.B. in Äpfeln, Kirschen, Birnen, Pflaumen) vorkommt, aber nicht oder nur in geringem Maße in Trauben, Traubensaft und Wein. Es ist ein Parameter, um die Authentizität von roten Säften und den Fruchtgehalt zu prüfen. Beispielsweise kann die Konzentration von D-Sorbitol genutzt werden, um den Apfelsaftgehalt in Getränken zu messen, die mit „enthält Apfelsaft“ gekennzeichnet sind. D-Sorbitol wirkt anti-kariogen, kann aber eine abführende Wirkung haben, wenn große Mengen verzehrt werden (10 – 50 g pro Tag). Es wird in der Lebensmittelindustrie als Feuchthaltmittel und Zuckerersatz (E420) für diätetische Produkte genutzt. D-Sorbitol ist säurestabil, verbessert die Textur von Lebensmitteln und bräunt nicht. Xylit ist ein Zuckeralkohol, der häufig in Obst, Gemüse und Pilzen vorkommt. Es wird industriell hergestellt. Xylit wird nicht von kariogenen Bakterien (z.B. Streptococcus mutans) vergoren.

Sulfit

Schwefeldioxid, Schwefelsäure und deren Salze (Sulfite) kommen in der Natur nur in sehr geringen Konzentrationen vor. Sie werden jedoch schon seit sehr langer Zeit in der industriellen Lebensmittelproduktion genutzt („Schwefeln“). Schwefeldioxid ist in der Lebensmittelindustrie als Konservierungsmittel (E220 bis E228) weit verbreitet, z.B. bei Fischprodukten und Meeresfrüchten, um mikrobiellen Verderb zu verhindern. Die Nutzung von Sulfit in der Weinproduktion zählt zu den wichtigsten Techniken, um die Stabilität und den Geschmack des Weins zu verbessern. Sulfit gilt jedoch als giftig für Zellen: im Stoffwechsel wird es schnell oxidiert und ausgeschieden. Der Sulfitgehalt in Lebensmitteln ist in vielen Ländern gesetzlich geregelt und da Sulfit auch als Allergen gilt (vgl. Sulfitintoleranz), muss der Sulfitgehalt häufig auf dem Produkt gekennzeichnet werden. So existiert z.B. ein gesetzlicher Grenzwert von 10 mg/l für Säfte.

Harnstoff (Urea)

Harnstoff ist das wichtigste Abbauprodukt des Eiweißstoffwechsels. Die Messung von Harnstoff in Körperflüssigkeiten gibt einen Hinweis auf die Proteinbilanz in Muskelzellen und die Proteinversorgung z.B. von Kühen. Harnstoff wird mitunter Fleischprodukten (unerlaubt) zugesetzt, um einen höheren Muskelanteil vorzutäuschen (der Zusatz von 1 % Harnstoff täuscht einen zusätzlichen Proteingehalt von 3 % vor). Weiterhin ist Harnstoff ein Indikator für das Vorhandensein von Urin in Schwimmbädern. Er wird zudem bei der Herstellung von Kosmetik, Arzneimitteln und Papier eingesetzt.

Technologie wählen

Parameter wählen

Das könnte Sie auch interessieren

RIDA®CUBE Ethanol
Der Test RIDA®CUBE  Ethanol dient der schnellen, enzymatischen Bestimmung von Ethanol in Lebensmitteln und anderen Probematerialien. Bitte beach...
Enzytec™ Liquid L-Malic acid
Enzymatic assay for  L-Malic acid in foodstuff and other sample materials
Enzytec™ Liquid L-Lactic a...
Enzymatic assay for L-Lactic acid in foodstuff and other sample materials

Beratung zum Thema Inhaltsstoffe

Fragen? Unser erfahrenes Team unterstützt Sie gern mit individuell zugeschnittenen Lösungen für Ihre Analytik.

Suchbegriff eingeben und Enter drücken